COMPOSER: A Probabilistic Solution to the Utility Problem in Speed-Up Learning
نویسندگان
چکیده
In machine learning there is considerable interest in techniques which improve planning ability. Initial investigations have identified a wide variety of techniques to address this issue. Progress has been hampered by the utility problem, a basic tradeoff between the benefit of learned knowledge and the cost to locate and apply relevant knowledge. In this paper we describe the COMPOSER system which embodies a probabilistic solution to the utility problem. We outline the statistical foundations of our approach and compare it against four other approaches which appear in the literature.
منابع مشابه
A Probabilistic Model of Learning Fields in Islamic Economics and Finance
In this paper an epistemological model of learning fields of probabilistic events is formalized. It is used to explain resource allocation governed by pervasive complementarities as the sign of unity of knowledge. Such an episteme is induced epistemologically into interacting, integrating and evolutionary variables representing the problem at hand. The end result is the formalization of a p...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملApproximation Methods for Solving the Equitable Location Problem with Probabilistic Customer Behavior
Location-allocation of facilities in service systems is an essential factor of their performance. One of the considerable situations which less addressed in the relevant literature is to balance service among customers in addition to minimize location-allocation costs. This is an important issue, especially in the public sector. Reviewing the recent researches in this field shows that most of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992